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1. 
liquid 

Let us consider the linearized system of hydrodynamics equations for a stratified 

pout + px = O, Pt - -  9og~v + 9oc2(ux + uu + wz) = O, 
I i 

pout -~ py = O, powt -,- Pz ~ gP = O, ( 1 . 1 )  

9t 4- wdpo/dz + po(ux + v,,t + u~'~) = O. 

Here u, v, w are velocity components, p is the pressure, P0 = P0(z) is the unperturbed density, 
p is the density perturbation, g is the acceleration of gravity, and c is the speed of sound. 

By a formal passage to the limit c + ~, the system (i.i) is converted into a system 
of internal wave equations 

pout ~Px = O, povt + P y  = O, ( 1 . 2 )  
PoWt + Pz + g9 = O, u x -i- uv + Wz = O, pt + wdpo/dz = O. 

It is impossible to give the initial values u, v, w, P, P arbitrarily for (1.2). Besides 
the incompressibility condition 

0 = ~ + 7y 4- ~, = 0 (l. Ba) 

they should satisfy the equation 

Ap + g p ~ -  p;ldpo, 'dz(pz + g~) = O. ( 1 . 3b )  

Consequently, the Cauchy problem for (1.2) requires "consistent" initial data that 
satisfy the conditions (1.3). At the same time the initial data for the original system 
(i.i) can be given arbitrarily. Then for c >> i, when the solution of the system (i.i) is 
close to the solution of the limit system (1.2) while the initial data u c, v c, w c, pC, pc 
are arbitrary and do not satisfy conditions (1.3), a process of "adaptation" of the initial 
data to these conditions should occur. It is natural ~o propose that this transition process 
include sound wave radiation, occur at the times x = L/c (L is the characteristic dimension 
of the problem), and result in consistent initial conditions u, v, w, P, P for which the 
velocity field is made vortical while the pressure and density turn out to be related by 
relationship (l. Bb). 

The question of how to determine the consistent data u, v, w, p, p from the original 
initial functions also occurs naturally. Let us note the analogy between such a formulation 
of the problem and the classical paper [I]. The steady motion in the problem of a geostrophic 
wind is also purely vortical, where the velocity components and the pressure are connected 
by the relationships u = -(2~zp)-iSp/Sy, v = --(2~zp)-18p/Sx, where m z = m 0 sin e, and e is 
the latitude. If the hydrodynamic field varies in some domain, its "adaptation" occurs 
accompanied by wave radiation in conformity with the equation 02~/Ot ~ = e~A~--4~ (~ is 
the velocity potential and c is the speed of sound). During this radiation, the potential 
part of the field "runs away" while the stationary value of the stream function $ and its 
corresponding pressure p are determined uniquely from the initial data. 

2. Let us give the solution of the formulated problem for the simplest case of a 
limitless exponential medium, po(z)-- p, exp (--• . Then (i.i) and (1.2) reduce to systems 
with constant coefficients and their solutions are written in quadratures. We assume here 
that the initial data for (i.i) are localized in a certain domain of diameter L; then the 
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characteristic time of sound wave propagation is ~c = L/c. On the other hand, the time scale 
for (1.2) is the period of the buoyancy T=2n/N (N=[--gpo1OPo/OZ]I/"= ]/~ is the Brent- 
Waisayla frequency). We furthermore assume that x c << T, i.e., L(xg)I/~. 

Let us formulate the main result of the research. We expand the fluid flow field 
p0(z)v(x, t) into potential and vortical parts 

poV(X, t) = ,OoVp(X, t) + ,Oo~v(X, t), ( 2 . 1 )  
p0vp(x, t) ---- Vr t), Vv(X , t) = rot  ~(x,  t). 

T h i s  d e c o m p o s i t i o n  d i f f e r s  f r o m  t h e  o r d i n a r y  o n e :  i t  i s  n e c e s s a r y  t h a t  t h e  v e l o c i t y  f i e l d  
v V be  v o r t i c a l  and  t h e  f l u i d  f l o w  f i e l d  90Vv be  p o t e n t i a l .  To c o n s t r u c t  t h e  d e c o m p o s i t i o n  
( 2 . 1 ) ,  we w r i t e  v v = v - t , o l V ( p ,  and  f r o m  t h e  c o n d i t i o n  d i v v v = O ,  we o b t a i n  f o r  ~ t h e  
e q u a t i o n  Ar - -  (VP0, Vr = 9o div v .  

The condition of subsidence at infinity assures uniqueness of the solution ~ We 
analogously set for the initial values of v~ 

po v~ (x) = p o ~  (x) + 9ov~ pov~ (x) = V<p ~ (x), v~ = rot r (x). ( 2 .  l a )  

L e t  ~(x) be  d e f i n e d  f r o m  t h e  i n i t i a l  v a l u e  9~ a c c o r d i n g  t o  ( 1 . 3 b )  and  t h e  a d d i t i o n a l  
condition p + 0 as Ix}-+ oo. The main result of the research is a theorem by virtue of 
which the velocity field becomes purely vortical during adaptation of the initial conditions 
while the pressure is adjusted by the density. 

Theorem A. For fixed t, x and c + ~ the solution of the system (i.i) tends to the 
solution of (1.2) satisfying the "consistent" initial conditions 

v (x, O) = v~ (x) = rot ~o (x), 9 (x, O) = 9 0 (x), p (x, O) = ~ (x). ( 2 . 2 )  

According to Theorem A, for arbitrarily small t = to, large values of c can be indicated 
such that the field of ~v,p, 9 at the time t o would be arbitrarily close to (2.2). To describe 
the adaptation process more exactly we introduce the "fast" time x = ct. 

Theorem B. For fixed r, x and c + =, the functions vv(~, T) and 9( x, ~) tend to 
A} the initial functions ~v(X) and 9~ , the function Vp(X, ~) tends to the limit value 

VI(X, T) and p(x, T) -- Cpl(N, T) -~ p0(X, ~) �9 For fixed x and x + ~, the functions vl(x, T) and 
p1(x, T) tend to zero, while the function po(X, T) tends to the limit p(x), where p~(x) is 
determined by means of p~ by virtue of (l.3b). 

Let us turn attention to the following circumstance. As is known, the system (1.2) 
reduces to one equation, say, for the vertical velcoity w: 

O'/Ot"[hw - -  g N-Ou,/Oz] + N~A h~v = 0 ( 2 . 3 )  

(a h = 82/8x 2 + 82/3y2) requiring assignment of two arbitrary initial fucntions. At the same 
time, (l.2)requires the assignment of five initial functions subject to the two conditions 
div v~ 0 and (l.3b), i.e., permits arbitrary assignment of three initial functions. 
Where is the excess initial function lost when going from (1.2) to (2.3)? The fact is that 
(i.i) and (1.2) have still another solution, stationary horizontal vortices, in addition 
to the acoustic and internal waves for (i.I) and the internal waves for (1.2). Namely, 
if the condition 8u~ + 8v~ = 0 is satisfied, then as is easily seen, the functions 
u(x, t) = u~ ~'(x, t) = v~ w(x, t) ~-p(x, t) ~ p(x, t)~ 0 are exact solutions of the systems 
(I.i) and (1.2). To filter these vortices out we can decompose the initial field of horizon- 
tal velocities into potential and vortical parts by setting u0 (x) = u~(x) ~- uS(x), v ~ (x) ---- U~ 

0 0 (x) + ug(x)(Su~/Sy = 8v~/$x, 8Uv/SX = --~Vv/Oy). Then the vortical part of the horizontal velocity 
field is conserved while the remaining potential field satisfies the condition 8u~ = 
8v~ that can be considered as the third consistency condition for reducing the Cauchy 
problem for (1.2) from five equations to the second order equation (2.3) in t. 

3. Let us introduce the function Q(x, t) = div v --- Ou/Ox -{- Ov/Og -~ Ow/Oz Then (i.i) 
will reduce to the system 

t t 
P~ + Powt + A p + gp~ = O' Pt + p~ + P~ = O' (3.1) 

PoWt "4- p,, + gp .= O, Pt -- Pod w + c~'poQ = O, 

which can be solved to yield u(X, t) and V(xl t) when utilizing conservation of the horizon- 
tal vorticity ~(x, t): ~(x, t) = 0u(x, t)/0y -- Or(x, t)/0x ~- Ou~ -- 0v~ = o"(x) , i.e., from the 
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e q u a t i o n s  Ou(x, t)/Ox + Or(x, t ) / O y - - Q ( x ,  t ) -  Ow(x, t);Oz, Ou(x, t ) / O y -  Or(x, t)/Ox = ~~ 

Let us reformulate Theorems A and B in terms of the system (3.1). To do this, we find 
the potential and vortical parts of the function w(x, t). From (2.1) there follows 
div(90 v) = 90Q + P0 w = A~ , i.e., the potential ~ is determined from the Poisson equation 
A~ = 90Q + by means of the known functions Q, w, from which r = A-~ (p0Q + pew) (A -~ is 
an integral operator inverse to the Laplace operator). Evidently, 

- a  ' ' ' ( 3 . 2 )  DotVp= O%/Oz = A [(ooQ)~ + (f,otV)~], Wv= w -  u,p. 

Consequently, Theorems A and B are formulated as follows: 

Theorem A'. For fixed t, x and c + ~ the solution of the system (3.1) tends to the 
solution 

9o wt + Pz + go = O, Ap + pew + ggz = O, 9t + w9o = O, ( 3 . 1 ' )  

satisfying the additional condition Q = 0 and the initial conditions 

w (x, 0) = w ~ (x) - -  f,o~A -~ (9oQ o + 9'o,vO)~, 

~, (x, 0) = o o (~), p (• o) = ~ (x) 

(p ix )  is determined as the solution of (l.3b)). 

Theorem B'. For fixed ct = T, x and c--~ co the functions w~x, x) and 9(x, r) tend 
to the initial values w~ and 9~ , the functions Q(x, x) and Wp(X, ~) to the limit 
v a l u e s  Ql(x, ~) and  wpl(x, T) w h i l e  p(x, ~) ----cpl(x , ~)-+-po(X, T) �9 F o r  f i x e d  x and  �9 -~ oo 
the functions Q1(x, ~, wp~(x, ~), p~(x, % tend to zero while po(x, ~) tends to the function 
p(x), the functions solution of (l.3b). 

( 3 . 3 )  . 

To prove Theorems A' and B' we go over from (3.1) to a system with constant coeffi- 
cients by setting p = exp(--• 9 = exp(--xz/2)p.9, (Q, w) ~ exp (xz/2)(Q, tv~ . 
for the variables Q, w, p, p ~the bar is henceforth omitted) 

Then we obtain 

( 3 . 4 )  
Q, -4- Ap - -  x~p/4 + gt)~ + xgg/2 = O, Pt - -  xw + Q = O, 

wt -'~- pz - xp/2 + g9 = O, pt - gw + c~ -~ O, 

(Q, w, p, 9)I,=0 -- (Q0, w0, p0, 90). 

The s o l u t i o n  o f  t h e  s y s t e m  ( 3 . 4 )  i s  f o u n d  e a s i l y  i n  q u a d r a t u r e s .  L e t  us  d e n o t e  t h e  unknown 
functions Q, w, p, p in terms of u i (i = l, 2, 3, 4); then we write (3.4) in the form 

( 3 . 4 ' )  
Au  = 0,~[~=0 = u~ 

where the elements of the matrix A are differential operators with constant coefficients. 
Let ~ denote the fundamental solution of the equation (detA)~ = 0 , i.e., the solution 
of the equation (det A)~ -6(t)6(x) that vanishes for t < 0. Then the solution of the system 
(3.4) has the form 

4 

u i ( x , t ) =  X B o , ' ~ t '  0z '  0,~' 0z ( 3 . 5 )  
2 = 1  

g 

H e r e  * i s  t h e  c o n v o l u t i o n  o p e r a t i o n  i n  t h e  s p a c e  v a r i a b l e s ,  B i j  a r e  c o f a c t o r s  o f  t h e  e l e m e n t s  
A i j  o f  t h e  m a t r i x  A. The f u n d a m e n t a l  s o l u t i o n  f o r  t h e  s y s t e m  ( 3 . 4 )  i s  w r i t t e n  down i n  t h e  
A p p e n d i x  ( t h i s  p r o b l e m  i s  a l s o  o f  i n d e p e n d e n t  i n t e r e s t ) . "  By u s i n g  ( 3 . 5 )  , t h e  s o l u t i o n  o f  
t h e  p r o b l e m  ( 3 . 4 )  c a n  be  w r i t t e n  down and  s a t i s f a c t i o n  o f  T h e o r e m s  A'  and B '  c a n  be  v e r i f i e d  
by  a d i r e c t  c a l c u l a t i o n .  H o w e v e r ,  t h i s  p-ath r e s u l t s  i n  awkward c a l c u l a t i o n s ;  c o n s e q u e n t l y ,  
we n o t e  a s i m p l e r  p r o o f  o f  T h e o r e m s  A'  and  B ' .  

L e t  us  f i r s t  e x a m i n e  T he o re m  B'  I n  t h e  s t a n d a r d  n o t a t i o n  ( 8 / a t ,  3 / 3 x ,  3 / a y ,  a / a z )  
(~, ~, $, ~), k 2 = ~2 + $2 + u the determinant (3.4) is 

det A = to g - -  c"-[of'-k 2 + N~(k 2 - -  T.2) _ o,• N 2 = xg - -  g"/c "2. ( 3 . 6 )  

Writing down the corresponding cofactors of (3.4): 3!I = o3+ xog + mg(~--x/2), 1921---- 
- -  ~ 67 2 - -  - -  - -  ~ o I --xcog(? + x /2) - -  o3g(k 2 x2/4), B3x --x~(k 7 2) co 2 (k 2 x2/4), B4~ g'-(k-' - -  7 2) - -  go- (?  , -  x/2);  and  

the expression for O(x, T) by the Fourier method in terms of the Fourier transforms Q0(k), w~ 
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p~ p~ of the initial data, and also taking into account that the substitution ~ = ~/c 
corresponds to the substitution �9 = ct, we find 

X ( i7--  • z + • ~ (k) dk ) ,  

lira Q (x, r / c )  =- Q~ (x, ~) = (2a) -3 .[ exp {--  ~ (k, x)} • Q0 (I~) cos ((k" + • dk, 

lira Qt (x, ~) = 0 (k = (a, g, ?)andQ ~ (k) = y exp (i (k, x)} Q0 (x) dx).  

A n a l o g o u s l y ,  u s i n g  t h e  f o r m u l a s  f o r  t h e  c o f a c t o r s  B~2, B22,  B32,  B42 , and p a s s i n g  t o  
t h e  l i m i t  i n  t h e  F o u r i e r  r e p r e s e n t a t i o n  f o r  w(x, "c/c) as  c~ ~ ,  and t h e n  as  x ~ ~ ,  we o b t a i n  

that the vertical velocity w(x, ~/c) tends to w (x)= w ~ (x) + w (x)(~ (x)= (2~) -~ [cxp {--i(k, x)}X 

k 
i.e., is a solution of the equation 

(A - -  • . . . . .  (O/Oz - -  • ~ ( 3 . 7 )  

It is easy to confirm that (3.7) for -w agrees with (3.2) after going over to the original 
variable, so that Wp(X) = -- $(x) and w(x) ---- wv(x ) . 

The assertions of Theorem B' referring to the limit behavior of the density and pressure 
are proved analogously. The limit value of p(x) is found in terms of the initial dens- 
ity p~ as the solution of the Poisson equation (A- x2/4)w----(0/0z- • 

To prove Theorem A' we go over from (3.1) to the system (3.4)with constant coefficients. 
Using_symbolic writing, we pass to the limit as c + ~. We then obtain 

Q ~ 0, w--~ (det B)- l( - -  a) (~ - -  • ~ q -  o)(k 2 - -  • ~ - -  

_ g ( k  ~ _ %,~)pO) = (det B ) - ~ ( o ) ( k  ~ - - •  - -  g(k 2 - -  ?~)po), 

p ~ (det B)-*(--•  - -  • ~ •  2 _ • ) w o ~_ r 2 _ x~/4)pO) = (det B ) - ~ ( k  ~ - -  x2/4)(• -4- cop~ 
( 3 . 8 )  

p ~ (det B)- l ( (xg + o)2)Q ~ - xg(~ + • ~ - o)g(~ + x/2)p ~ = 

= (det B ) - ~ ( o J ( k  "- -- • -- • + x/2)w) + Q ~  -- • = 

--  g(,? ~ u/2)(k 2 - -  • det B ---- o)2k 0~ - -  N 2 ( k  2 - -  ~2) _ o)2• N"- =- •  

since O~215 yields no contribution for all t > 0. Let us note that (3.8) agrees 
with the formulas for the solution of the Cauchy problem in the initial data (w v, O ~ found 
directly from (3.1'). 

4. In the problem of impact in an incompressible fluid ([3, Sac. ii] as well as [4]), 
fluid motion is considered under the action of impulsive mass forces X(x, t) acting during 

a small time interval, where V(x)=~X(x,t)dl,remains fixed as T+0. The Cauchyproblem for 
0 

(i.I) with zero initial perturbations p(x), p(x) can also be considered as the limit case 
of the impact problem since it is equivalent to the problem with zero initial data and 6- 
shaped mass forces X(x,t) in the right sides of the equations for u t, vt, w t. Let ~(~, 
c, x, t)denote the solution of the problem with zero initial data and mass forces acting for 
0 < t < �9 (dependent on T and c as on parameters). Let us define the double passage to the 

-- n 

limit 
lira l i m ~  (% c ,x ,  t), (4.1) 
C ~  ~ 0  

where the inner limit is passage to the Cauchy problem with zero ~x), p(x) and nonzero 
~(x), ~x),u~x) , while the outer is passage to an incompressible fluid. The passage to the 
limit 

l i m l i m ~ ( % c ,  x , t )  ( 4 . 2 )  
T ~ O  C ~  

is examined in [3, 4]. The inner limit is passage to an incompressible fluid while the 
outer describes the action of the mass forces. 

Let us show that these limits agree. The fluid velocity after the action of impulsive 
forces 
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i T V (x) = X (x, t) d t -  p7 ~ y grad p (x, t) dt  = V (x) -- pT 1 grad ~ (x), ( 4 . 3 )  
0 0 

i s  found  in  [3,  Sec.  11, f o r m u l a  ( 1 ) ] ,  where p(x, t) i s  t h e  p r e s s u r e  t h a t  o c c u r s  because  of  

t h e  a c t i o n  of  t h e  i m p u l s i v e  f o r c e s ,  w h i l e  t h e  f u n c t i o n  m(x) = , I p ( x , t ) d t  i s  c a l l e d  t h e  i m p u l s i v e  
0 

p r e s s u r e  in  [ 3 ] .  The problem of  d e t e r m i n i n g  t h e  v e l o c i t y  V(x) r e d u c e s  t o  e v a l u a t i n g  ~(x) 
f o r  which we use  t h e  f a c t  t h a t  t h e  d i v e r g e n c e  o f  t h e  l e f t  s i d e  o f  ( 4 . 3 )  s h o u l d  be z e r o .  
Decomposing~ V(x) i n t o  p o t e n t i a l  and v o r t i c a l  p a r t s  a c c o r d i n g  t o  ( 2 . 1 a ) ,  we o b t a i n  V(x) 
Vv(X) and a(x) = @~ Now agreemen t  between t h e  l i m i t s  ( 4 . 1 )  and ( 4 . 2 )  r e s u l t s  d i r e c t l y  
from Theorem A. 

Let us note, however, that the problem considered above is more general than the impact 
problem, since although the initial velocity perturbation can be interpreted as the result 
of the action of the impulsive mass forces, the initial density and pressure perturbations 
are not successfully interpreted thus. 

APPENDIX 

The system (i.i) can be reduced to one equation for the vertical velocity w, say, 
'which has the form (see (3.6)) 02/Ot2(Aw- • N2Ahw- c-2~4w/Ot 4= 0 in the original vari- 
ables. Utilizing the traditional Boussinesq approximation for simplicity, we discard the 
term • and write down the fundamental solution of the equation obtained: 

L ~ o  = (a~/at2h 6 N2Ah  - -  c - 2 a * / a t 4 ) ~  = 6(x)6(t ) .  

I t  i s  e a s y  to  show (compare w i t h  [5 ] ,  f o r m u l a  ( 7 . 1 3 ) )  t h a t  
oo+ie f {  i~ V J - -  N2 c~ T} d~ (A.I) 

~o = __s~,~1 e~p - io~t + --c ~2 _ ~..,, x f ~ ' - ~ - ~  ~ V 7  - ~ ~o~ ~ 
--oo+is 

(cos qo = z /r ,  r = (x ~ + y~ § zD~l~). 

The s o l u t i o n  of  t h e  Cauchy problem L c w = 0 w i t h  t h e  i n i t i a l  d a t a  w lt=o = w ~ 8w/ 

3tit= 0 = w i, 82w/St2[t= 0 = w 2, 83w/St3[t= 0 = w s is written 

w = O/Ot [] ~c*w ~ [] ~'e*w 1 -  c-2O[~c/at*zv 2 -  (A.2)  
__ C-2 ~c./72 3 

([] = A - c-232/8t 2 is the D'Alembert operator. As c § ~, (A.2) becomes the known for- 
mula [2] for the solution of the Cauchy problem for the internal wave equation w ---- O~/Ot*Aw ~ 
-6 ~*Aw I (~f is the fundamental solution of the internal wave equation). Returning~to the 
"physical" initial data (w ~ p0), we find w --- O~/Ot*Aw ~ -- g~*AhP ~ . 

Setting t = x/c in (A.I) and passing to the limit as c + ~, we obtain ~c(r, r T/c)--+ ~fv(r, 
T)---- (4ar)-1(T -- r) 0 (T)0(T -- r) , the fundamental solution of the ordinary wave equation integrated 
twice with respect to ~ (8 is the Heaviside function). 

I. 

2. 

3., 
4. 

5. 

LITERATURE CITED 

A. M. Obukhov, "On the question of the geostrophic wind," Izv. Akad. Nauk SSSR, Ser. 
Geogr. Geofiz., 13, No. 4 (1949). 
S. Ya. Sekerzh-Zenkovich, "Fundamental solution of the internal wave operator," 
Dokl. Akad. Nauk SSSR, 246, No. 2 (1979). 
H. Lamb, Hydrodynamics, 6th ed., Dover, New York (1932). 
N. E. Kochin, I. A. Kibel', and N. V. Roze, Theoretical Hydromechanics [in Russian], 
Vol. i, Gostechizdat, Moscow (1948). 
L. A. Dikii, Theory of Fluctuations of the Earth's Atmosphere [in Russian], Gidrometeoiz- 
dat, Leningrad (1969). 

687 


